Exercise 33

For the following exercises, solve the equations over the complex numbers.

$$
x^{2}-4 x+13=0
$$

Solution

The two terms with x, x^{2} and $4 x$, cannot be combined, so it's necessary to complete the square to solve for x. Recall the following algebraic identity.

$$
(x+B)^{2}=x^{2}+2 x B+B^{2}
$$

Notice that $2 B=-4$, which means $B=-2$ and $B^{2}=4$. Add and subtract 4 from the left side and apply the identity.

$$
\begin{gathered}
\left(x^{2}-4 x+4\right)+13-4=0 \\
(x+(-2))^{2}+9=0 \\
(x-2)^{2}+9=0
\end{gathered}
$$

Now that x appears in only one place, it can be solved for. Subtract 9 from both sides.

$$
(x-2)^{2}=-9
$$

Take the square root of both sides.

$$
\begin{aligned}
\sqrt{(x-2)^{2}} & =\sqrt{-9} \\
& =\sqrt{9(-1)} \\
& =\sqrt{9} \sqrt{-1} \\
& =3 i
\end{aligned}
$$

Since there's an even power under an even root, and the result is to an odd power, an absolute value sign is needed around $x-2$.

$$
|x-2|=3 i
$$

Remove the absolute value sign by placing \pm on the right side.

$$
x-2= \pm 3 i
$$

Add 2 to both sides.

$$
x=2 \pm 3 i
$$

Therefore, $x=\{2-3 i, 2+3 i\}$.

